Jenis Fiber Optik Berdasarkan Jumlah Mode dan Indeks Bias: Tinjauan dan Perbandingan

Riki Perdana, Riwayani Riwayani, Heru Kuswanto

Abstract


Abstract: Many types of fiber optics have been developed and used by researchers to create best fiber. This study aimed to provide an overview of the the type of fiber optics based on the number of mode and refractive index. Also the study provide a breif comparison of these types with their strengths and weakness. A total 30 article published (from the year 2016 to 2020) in main journals wew investigated thoroughly through document analysis method. The study reveals some type of fiber optic. However, each types has some advantages as well as disadvantages over the others that should be kept in mind in their usages. A carefull user, such as researcher or others would be aware of the types and select the most effective one for his/her purposes.

Keywords: Fiber optics, number of mode, refractive index

Abstrak: Banyak jenis fiber optik telah dikembangkan dan digunakan oleh para peneliti untuk menghasilkan jenis terbaik. Penelitian ini bertujuan untuk memberikan gambaran tentang jenis fiber optik berdasarkan jumlah mode dan indeks biasnya. Studi ini juga memberikan perbandingan singkat dari jenis-jenis ini dengan kelebihan dan kekurangannya. Sebanyak 30 artikel yang diterbitkan (dari tahun 2016 hingga 2020) di jurnal-jurnal utama yang telah diteliti secara menyeluruh melalui metode analisis dokumen. Studi ini mengungkapkan kelbihan dan kekurangan setiap jenis fiber optik. Namun, masing-masing jenis memiliki beberapa kelebihan dan kekurangan dibandingkan yang lain yang harus diingat dalam penggunaannya. Pengguna yang berhati-hati, seperti peneliti atau orang lain akan menyadari jenisnya dan memilih yang paling efektif sesuai dengan tujuan penggunaan.

Kata-kata kunci: Fiber optic, jumlah mode, dan indeks bias


Full Text:

PDF

References


Amini, S., Kavousi, P., & Carr, T. R. (2017). Application of fiber-optic temperature data analysis in hydraulic fracturing evaluation: A case study in Marcellus Shale. SPE/AAPG/SEG Unconventional Resources Technology Conference 2017. https://doi.org/10.15530/urtec-2017-2686732

Arshad, M. A., Hartung, A., & Jäger, M. (2019). A stimulated Stokes Raman scattering-based approach for continuous wave supercontinuum generation in optical fibers. Laser Physics Letters. https://doi.org/10.1088/1612-202X/aaff53

Badhon, A. I., Prapty, H. A., Amin, K. Bin, & Hossain, M. A. (2018). Analysis of coupling coefficient and crosstalk in a homogenous multicore optical fiber. International Conference on Advanced Communication Technology, ICACT. https://doi.org/10.23919/ICACT.2018.8323860

Beier, F., Hupel, C., Kuhn, S., Hein, S., Nold, J., Proske, F., Sattler, B., Liem, A., Jauregui, C., Limpert, J., Haarlammert, N., Schreiber, T., Eberhardt, R., & Tünnermann, A. (2017). Single mode 43 kW output power from a diode-pumped Yb-doped fiber amplifier. Optics Express. https://doi.org/10.1364/oe.25.014892

Ceci-Ginistrelli, E., Pugliese, D., Boetti, N. G., Novajra, G., Ambrosone, A., Lousteau, J., Vitale-Brovarone, C., Abrate, S., & Milanese, D. (2016). Novel biocompatible and resorbable UV-transparent phosphate glass based optical fiber. Optical Materials Express. https://doi.org/10.1364/ome.6.002040

Chen, X., Himmelreich, J. E., Hurley, J. E., Zhou, C., Jiang, Q., Qin, Y., Li, J., Wu, C., Chen, H., Coleman, D., & Li, M. J. (2019). Universal fiber for short-distance optical communications. Journal of Lightwave Technology. https://doi.org/10.1109/JLT.2018.2886954

Chen, X., Li, K., Zakharian, A. R., Hurley, J. E., Stone, J. S., Coleman, D., Liu, J., Wu, Q., & Li, M. J. (2020). A fiber modal adapter for upgrading 850 nm multimode fiber links to 1310 nm single-mode transmission. Optical Fiber Technology. https://doi.org/10.1016/j.yofte.2020.102210

Cottrell, D. M., & Davis, J. A. (2019). Simulation of multimode optical fibers using the angular spectrum algorithm and a Fourier analysis. Applied Optics. https://doi.org/10.1364/ao.58.004585

Datta, A., & Saha, A. (2020). Realization of a highly sensitive multimode interference effect-based fiber-optic temperature sensor by radiating with a Vortex beam. Optik, 165006.

De-Jun, F., Mao-Sen, Z., Liu, G., Xi-Lu, L., & Dong-Fang, J. (2014). D-shaped plastic optical fiber sensor for testing refractive index. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2014.2301911

Djordjevich, A., & Savović, S. (2017). Mode coupling in 340 µm GeO2 doped core-silica clad optical fibers. Optics and Laser Technology. https://doi.org/10.1016/j.optlastec.2016.10.009

Dong, C., Jiang, Y., Ye, S., Xing, R., Wu, Y., & Jian, S. (2019). Liquid refractive index and temperature sensor using multimode interference-based corroded polarization-maintaining fiber. Journal of Nanophotonics. https://doi.org/10.1117/1.jnp.13.016007

Florentin, R., Kermene, V., Benoist, J., Desfarges-Berthelemot, A., Pagnoux, D., Barthélémy, A., & Huignard, J. P. (2017). Shaping the light amplified in a multimode fiber. Light: Science and Applications. https://doi.org/10.1038/lsa.2016.208

Gao, S., Ji, C., Ning, Q., Chen, W., & Li, J. (2020). High-sensitive Mach-Zehnder interferometric temperature fiber-optic sensor based on core-offset splicing technique. Optical Fiber Technology. https://doi.org/10.1016/j.yofte.2020.102202

Ghahfarokhi, P. K., Carr, T., Bhattacharya, S., Elliott, J., Shahkarami, A., & Martin, K. (2018). A fiber-optic assisted multilayer perceptron reservoir production modeling: A machine learning approach in prediction of gas production from the Marcellus shale. SPE/AAPG/SEG Unconventional Resources Technology Conference 2018, URTC 2018. https://doi.org/10.15530/urtec-2018-2902641

Guo, T., Li, P., Zhang, T., & Qiao, X. (2019). Compact fiber-optic ultrasonic sensor using an encapsulated micro-cantilever interferometer. Applied Optics. https://doi.org/10.1364/ao.58.003331

Habib, M. A., & Anower, M. S. (2019). Design and numerical analysis of highly birefringent single mode fiber in THz regime. Optical Fiber Technology. https://doi.org/10.1016/j.yofte.2018.11.006

Ikhsan, R., Syahputra, R. F., Saktioto, & Okfalisa. (2018). Performance control of semiconductor optical amplifier and fiber raman amplifier in communication system. Proceedings - 2018 IEEE/ACIS 19th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, SNPD 2018. https://doi.org/10.1109/SNPD.2018.8441122

Jiao, L., Zhong, N., Zhao, X., Ma, S., Fu, X., & Dong, D. (2020). Recent advances in fiber-optic evanescent wave sensors for monitoring organic and inorganic pollutants in water. In TrAC - Trends in Analytical Chemistry. https://doi.org/10.1016/j.trac.2020.115892

Jing, N., Zheng, J., Zhao, X., & Teng, C. (2015). Refractive Index Sensing Based on a Side-Polished Macrobending Plastic Optical Fiber. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2014.2385308

Kruglov, R., Loquai, S., Vinogradov, J., Ziemann, O., Bunge, C. A., Bruederl, G., & Strauss, U. (2016). 10.7 Gb/s WDM transmission over 100-m SI-POF with discrete multitone. 2016 Optical Fiber Communications Conference and Exhibition, OFC 2016. https://doi.org/10.1364/ofc.2016.w4j.5

Li, M.-J., Chen, X., Li, K., Hurley, J. E., & Stone, J. (2019). Optical fiber for 1310nm single-mode and 850nm few-mode transmission. https://doi.org/10.1117/12.2516013

Li, M.-J., Li, K., Chen, X., Mishra, S. K., Juarez, A. A., Hurley, J. E., & Stone, J. S. (2020). Single-Mode VCSEL Transmission Over Graded-index Single-Mode Fiber Around 850 nm. https://doi.org/10.1364/ofc.2020.w4d.4

Li, S., & Li, X. (2019). A simulation study on chaotic behavior of light propagation in graded index fiber under random perturbation. Optical and Quantum Electronics. https://doi.org/10.1007/s11082-019-1780-5

Li, Y., Wang, X., Zheng, H., Li, X., Bai, C., Hu, W., & Dong, Q. (2020). A novel six-core few-mode fiber with low loss and low crosstalk. Optical Fiber Technology, 5, 102211.

Lim, C. B., Conan, J. M., Michau, V., Vedrenne, N., Montmerle-Bonnefois, A., Petit, C., Sauvage, J. F., Meimon, S., Perrault, P., Mendez, F., Fleury, B., & Montri, J. (2019). Single-Mode Fiber Coupling with Adaptive Optics for Free-Space Optical Communication under Strong Scintillation. 2019 IEEE International Conference on Space Optical Systems and Applications, ICSOS 2019. https://doi.org/10.1109/ICSOS45490.2019.8978978

Lirola, F., Pionetti, F. R., Agoumi, J., & Sundermann, A. (2016). Development and qualification of an innovative and cost efficient heat traced flowline optimized for J-laying. Proceedings of the Annual Offshore Technology Conference. https://doi.org/10.4043/27044-ms

Maiti, S., Biswas, S. K., & Gangopadhyay, S. (2019). Study of coupling optics involving graded index fiber excitation via upside down tapered parabolic microlens on the fiber tip. Optik. https://doi.org/10.1016/j.ijleo.2019.163318

Mansuan, M. S., Soewito, B., & Hamdani, M. (2018). Designing Fiber Optic Network using Voronoi Diagram Approach. Procedia Computer Science. https://doi.org/10.1016/j.procs.2018.08.145

Markiewicz, K., Kaczorowski, J., Yang, Z., Szostkiewicz, L., Dominguez-Lopez, A., Wilczynski, K., Napierala, M., Nasilowski, T., & Thévenaz, L. (2020). Frequency scanned phase sensitive optical time-domain reflectometry interrogation in multimode optical fibers. In APL Photonics. https://doi.org/10.1063/1.5138728

Md Johari, M. A., Mohd Azize, A., Mohd Said, R., Ngatiman, N. A., & Zaine, N. (2017). Corn Oil Concentrations Detection for Food Industry Research Development by Using Application of Fiber Optic Liquid Sensor Concept. MATEC Web of Conferences. https://doi.org/10.1051/matecconf/20179701108

Mohapatra, B. N., Jonaid, M., & Routray, A. (2017). Audio Transmitter and receiver System using Fiber Optic Cable. International Journal of Emerging Technologies in Engineering Research (IJETER), 5(5).

Moore, S. (2019). Composite graded-index fiber mode field adaptor for high-aspect-ratio core optical fibers.

Mukhopadhyay, S. (2017). Laser diode to circular core graded index single mode fiber excitation via quadric interface microlens on the fiber tip and identification of the suitable refractive index profile for maximum coupling efficiency with optimization of structure parameter. Journal of Optics (India). https://doi.org/10.1007/s12596-016-0358-x

Murray, M. J., Davis, A., & Redding, B. (2018). Multimode fiber Φ-OTDR with holographic demodulation. Optics Express. https://doi.org/10.1364/oe.26.023019

Peiwen Kuan, P. K., Xiaokang Fan, X. F., Wentao Li, W. L., Xueqiang Liu, X. L., Chunlei Yu, C. Y., Lei Zhang, L. Z., & and Lili Hu, and L. H. (2016). High-efficiency ~2 μm laser in a single-mode Tm-doped lead germanate composite fiber. Chinese Optics Letters. https://doi.org/10.3788/col201614.081601

Pourbeyram, H., & Mafi, A. (2016). Photon pair generation in multimode optical fibers via intermodal phase matching. Physical Review A. https://doi.org/10.1103/PhysRevA.94.023815

Pradhan, S., Patnaik, B., & Panigrahy, R. (2019). Hybrid Multiplexing (OTDM/WDM) Technique for Fiber Optic Communication. 2018 IEEE 5th International Conference on Engineering Technologies and Applied Sciences, ICETAS 2018. https://doi.org/10.1109/ICETAS.2018.8629159

Prasetyo, E., Gitrin, M. P., Marzuki, A., & Suryanti, V. (2017). Biochemical fiber sensor based on evanescent field for detection persistent organic pollutants (POPs). Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/795/1/012028

Prottasha, S. N., Ahmed, N. N. N., & Afroj, J. (2017). Comparative Study of Dispersion and Other Losses including Nonlinear Impairments of Different Models of Photonic Crystal Fiber (PCF) by Varying Geometrical Shapes. Military Institute of Science and Technology (MIST).

Raju, S., & Arunachalam, M. (2019). Performance of Fiber with Elevated Refractive Index at Core Axis. IEEE International Conference on Intelligent Techniques in Control, Optimization and Signal Processing, INCOS 2019. https://doi.org/10.1109/INCOS45849.2019.8951402

Rao, S. K., Priya, A. K., Kamath, S. M., Karthick, P., Renganathan, B., Anuraj, S., & Gopalakrishnan, C. (2020). Unequivocal evidence of enhanced room temperature sensing properties of clad modified Nd doped mullite Bi2Fe4O9 in fiber optic gas sensor. Journal of Alloys and Compounds, 155603.

Ren, Y. (2019). Specially Shaped Optical Fiber Probes: Understanding and Their Applications in Integrated Photonics, Sensing, and Microfluidics. Worcester Polytechnic Institute.

Sadhu, A., & Sarkar, S. (2016). A straightforward approximate analysis of Kerr nonlinear processes in sub-wavelength diameter optical fiber with better accuracy over variational technique. Optics Communications. https://doi.org/10.1016/j.optcom.2016.01.008

Schena, E., Tosi, D., Saccomandi, P., Lewis, E., & Kim, T. (2016). Fiber optic sensors for temperature monitoring during thermal treatments: An overview. In Sensors (Switzerland). https://doi.org/10.3390/s16071144

Seo, H. (2020). Monitoring of CFA pile test using three dimensional laser scanning and distributed fiber optic sensors. Optics and Lasers in Engineering. https://doi.org/10.1016/j.optlaseng.2020.106089

Thomas, P. J., & Hellevang, J. O. (2020). A distributed fibre optic approach for providing early warning of Corrosion Under Insulation (CUI). Journal of Loss Prevention in the Process Industries. https://doi.org/10.1016/j.jlp.2020.104060

Tian, K., Farrell, G., Wang, X., Yang, W., Xin, Y., Liang, H., Lewis, E., & Wang, P. (2017). Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure. Optics Express. https://doi.org/10.1364/oe.25.018885

Udd, E., & Spillman, W. B. (2011). Fiber Optic Sensors: An Introduction for Engineers and Scientists: Second Edition. In Fiber Optic Sensors: An Introduction for Engineers and Scientists: Second Edition. https://doi.org/10.1002/9781118014103

Wu, N., Zou, X., Zhou, J., & Wang, X. (2016). Fiber optic ultrasound transmitters and their applications. Measurement: Journal of the International Measurement Confederation. https://doi.org/10.1016/j.measurement.2015.10.002

Yu, Z., Zhao, P., Lian, H., Hou, J., Chen, B., Zhao, N., & Chen, J. (2020). 3.3 kW high power single mode fiber laser. Sixth Symposium on Novel Optoelectronic Detection Technology and Applications, 1145544. https://doi.org/10.1117/12.2564807

Zhang, R., Tian, X., Zhou, D., Xu, D., Zong, Z., Li, H., Fan, M., Zhu, N., Su, J., Zhu, Q., & Jing, F. (2018). Single-mode millijoule fiber laser system with high pulse shaping ability. Optik. https://doi.org/10.1016/j.ijleo.2017.11.198




DOI: https://doi.org/10.46368/qjpia.v2i2.923

Article Metrics

Abstract view : 554 times
PDF - 996 times

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 QUANTUM: Jurnal Pembelajaran IPA dan Aplikasinya

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.